Ocnus.Net
News Before It's News
About us | Ocnus? |

Front Page 
 
 Africa
 
 Analyses
 
 Business
 
 Dark Side
 
 Defence & Arms
 
 Dysfunctions
 
 Editorial
 
 International
 
 Labour
 
 Light Side
 
 Research
Search

Dark Side Last Updated: Nov 3, 2019 - 1:21:27 PM


Logistics: Instant 3D Satisfaction
By Strategy Page, November 2, 2019
Nov 2, 2019 - 1:31:08 PM

Email this article
 Printer friendly page

France has joined a growing number of armed forces that use 3D printers for making the many small plastic, or even metal, parts. Many of these parts, when broken, can make a vehicle, aircraft, weapon or electronic items inoperable until a replacement part arrives. The French unit testing the use of 3D printers is a unique one, the 4.500 soldiers, special operations troops and aircraft crews that have, since 2014 has been in the Sahel (the semi-desert area from the Atlantic to Ethiopia) to combat Islamic terrorists. The headquarters of the task force are in landlocked Chad and about half the troops are in landlocked Mali to the west. A shortage of rivers and roads means it is time consuming and expensive to get supplies in, even if you expedite the process by putting them aboard military transport aircraft that regularly fly between the Sahel bases and France. So the Task Force now has two 3D printers at its Chad headquarters and they are in regular use to quickly supply needed parts. Otherwise a lot of equipment would be sidelined for days or weeks waiting for the part arrived from France or a foreign manufacturer.

The U.S. Army pioneered this approach bask in 2003 with the establishment of the MPH (Mobile Parts Hospital). Initially this operation did not use 3D printers (that tech was still primitive) but with a more mature, and bulky technology. MPH initially used CAD (Computer Assisted Design) data for parts and new lightweight computer controlled machine tools to manufacture new parts as needed. MPH was very popular and that led to calls for upgrades. By 2013 MPH had added 3D printers.

By 2016 SOCOM (Special Operations Command), which had already been using MPH, noted that users (including some SOCOM personnel) were designing their own new parts and using MPHs to build them for immediate testing. A growing percentage of those new component designs worked and many became part of the factory made systems. Most SOCOM MPH detachments consisted of just a laptop and a 3-D printer for non-metal parts. The 3D printer for metal parts was bulker and a lot more expensive and initially fewer of them were out in the field.

Meanwhile other nations were adopting these technologies. The Royal Navy had adopted the 3D printing concept for its warships in 2015, as had he U.S. Navy and American marines. Meanwhile this 3D printer approach had been adopted by many companies that provided field support for expensive and complex equipment. It was easy and inexpensive to supply field support teams with a 3D printer that could quickly produce thousands of plastic, and now metal, parts in aircraft, ships, generators, electronics construction vehicles and so on. Often the original manufacturer had to be notified and paid, or simply notified if the part was simple, like part of a switch or connector.

It took the American army a decade to develop and deploy a second and third generation of MPH. The 2013 version was actually called Ex Lab (Expeditionary Lab) and was more compact and relied more on 3-D parts builders (3D printers) and operators trained to help users come up with designs for components that don’t yet exist. It was often the case that troops discovered the need for a new component or improved replacement part for their equipment. In the past this request often had to go back to the original factory for development and manufacturing. But with the software and equipment available now, as well as satellite data links to factories, it is possible to get this work done quickly in the combat zone. Thus, the new name for what is essentially MPH 3.0.

MPH was developed when the army realized that the easiest and quickest way to get the many rarely requested, but vital, replacement parts to the troops was to manufacture the parts in the combat zone. After September 11, 2001, this led to the construction of a portable parts fabrication system which fit into a standard 8x8x20 foot shipping container. The original version used two containers, but smaller equipment and more powerful computers eventually made it possible to use one container. By 2010, there were four MPH systems in service, two of them in Afghanistan. Over the next few years then two more were built, for under $2 million each. In the first decade of use MPHs manufactured over 150,000 parts on the spot saving lots of time, shipping expense, and aggravation for troops needing the item. This saved days, or weeks, that it would take to order the part from the manufacturer. The MPH part is usually a lot cheaper, because the air freight and manufacturer mark ups to pay for maintaining the part in inventory. MPH 2.0 had a 3-D part builder, which uses metal dust and a laser to build a part.

SOCOM built their own, more ambitious, version of MPH in 2009. This was the MTC (Mobile Technology Complex) that could fix more complex and exotic gear, which SOCOM has a lot of. MTC could modify their special gear, or even create something new. SOCOM sent most of their MTCs to Afghanistan to see how effective they would be at improving the readiness of equipment, and the usefulness of being able to modify existing gear, and build new stuff on the spot. The MTC was a modified, with some new gear, version of MPH 2.0. This in turn led to Ex Labs.

The key to making this work originally was the availability of computer controlled machine tools, which can take a block of the proper metal and machine it into the desired part. The computer controlled machine tools have been around for decades, but the big breakthrough was the development of CAD software for PCs in the 1980s, which made the process of designing, and then fabricating, a part much faster. The computer controlled machine tools can use the CAD file to automatically create the part. The MPH has a high speed satellite data link, which enables it to obtain the CAD file for a part. Many CAD files are already stored in the MPH. Often, the MPH staff figure out a way to improve a part, based on the broken parts they see and what the troops tell them.

The computer controlled machine tools were eventually complemented, and now often replaced by 3D printers that can make all manner of metal parts. Aircraft and spaceship (SpaceX) manufacturers used this equipment on a large scale to build prototypes or items, like satellite launchers and transport vehicles to bring supplies, and people to the International Space Station. The metal 3D printers now come in a wide range of sizes and capabilities. Some never leave the factory but the more portable ones are now common in field service offices and with the military.

All these instant parts builder operations tended to be staffed and open 24/7. The demand for critical parts happened round the clock in a combat zone and it was often a matter of life or death to get the part as quickly as possible. This has eliminated many of the “spare parts crises” where large quantities of equipment in a combat zone would be unavailable because a few parts were found to wear out more quickly than anticipated in combat. When that sort of thing happens now the MPH can get parts to the troops quickly while the factory is alerted to produce more and air freight them to the combat zone as soon as they can.

Meanwhile military use of this technology led to the concept of building entire systems on demand with the 3D printers. Either that or extensive modifications for existing equipment. One application involved 3D printed UAVs that cost about $1,000 but use commercial components (batteries, electric motors, cameras and wireless comms). The airframe is 3D printed on demand at battalion and brigade level. The troops would still have similar Raven UAV, with its longer duration, better sensors and encrypted comms. But for most combat zone needs the 3D UAVs built back at battalion or brigade headquarters as needed would get the job done. These weigh less than 1 kilogram (2.2 pounds) and have limited endurance (20 minutes) and range (about three kilometers) but for most combat situations that is sufficient. A smart phone or tablet can be used as a controller. The 3D printers required are small and use plastic material that can also be used to create replacement parts on-demand for damaged UAVs as well as a long list of parts for other equipment in the battalion. Thus the 3D Printers would not be added to battalion or brigade equipment just for making UAVs but for supplying a long list of plastic replacement parts instantly.

In a combat zone there is simply more demand for modifications to existing equipment that are a matter of life or death, or at least less anxiety.


Source:Ocnus.net 2019

Top of Page

Dark Side
Latest Headlines
Europe Ensnared in a Web of Russian Spies
Libya: The Turkish Gambit
The Betrayal of Volodymyr Zelensky
Harvesting the blood of America’s poor: the latest stage of capitalism
The Extradition Case Of Dmytro Firtash: A Ukrainian Oligarch With Global Connections
Defenceless Elders
Myanmar: Battling History And Losing
Trump’s Other Lawyer
Blood and Soil in Narendra Modi’s India
Gangs of the North